ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система защиты от коррозии и старения

ПОКРЫТИЯ МЕТАЛЛИЧЕСКИЕ И НЕМЕТАЛЛИЧЕСКИЕ НЕОРГАНИЧЕСКИЕ

Методы контроля

Unified system of corrosion and ageing protection. Metal and non-metal inorganic coatings. Control methods

ГОСТ 9.302-88

(ИСО 1463-82, ИСО 2064-80, ИСО 2106-82, ИСО 2128-76, ИСО 2177-85, ИСО 2178-82, ИСО 2360-82, ИСО 2361-82, ИСО 2819-80, ИСО 3497-76, ИСО 3543-81, ИСО 3613-80, ИСО 3882-86, ИСО 3892-80, ИСО 4516-80, ИСО 4518-80, ИСО 4522/1-85, ИСО 4522/2-85, ИСО 4524/1-85, ИСО 4524/3-85, ИСО 4524/5-85, ИСО 8401-86,

СТ СЭВ 2005-79, СТ СЭВ 3915-82 СТ СЭВ 4118-83, СТ СЭВ 4119-83, СТ СЭВ 4120-83, СТ СЭВ 4660-84, СТ СЭВ 4661-84, СТ СЭВ 4662-84, СТ СЭВ 4664-84, СТ СЭВ 4665-84, СТ СЭВ 4816-84, СТ СЭВ 5290-85)

Дата введения 01.01.90

ОГЛАВЛЕНИЕ

1.

Общие положения

2.

Метод контроля внешнего вида покрытий

3.

Методы контроля толщины покрытий

4.

Методы контроля пористости покрытий

5.

Методы контроля прочности сцепления покрытий

6.

Методы контроля защитных свойств неметаллических неорганических покрытий

7.

Методы контроля химического состава покрытий

8.

Метод контроля маслоемкости покрытий

9.

Метод контроля полноты промывки неметаллических неорганических покрытий

10.

Методы контроля защитных свойств металлических покрытий

11.

Методы контроля поверхностной плотности фосфатных покрытий

12.

Методы контроля наполнения анодно-окисных покрытий на алюминии и его сплавах

13.

Методы контроля функциональных свойств покрытий

14.

Метод определения внутренних напряжений металлических электрохимических покрытий

15.

Метод определения относительного удлинения никелевого покрытия

16.

Реактивы и материалы, применяемые при контроле покрытий

17.

Контрольно-измерительная аппаратура, применяемая при контроле покрытий

18.

Требования безопасности

Приложение 1

Применение неразрушающих методов контроля толщины покрытий

Приложение 2

Применение разрушающих методов контроля толщины покрытий

Приложение 3

Приборы, применяемые для контроля толщины покрытий

Приложение 4

Приготовление растворов

Приложение 5

Плотность металлов

Приложение 6

Изготовление и подготовка шлифа

Приложение 7

Электрографические методы контроля пористости золотых покрытий

Приложение 8

Метод контроля защитных свойств хроматных покрытий на цинковых и кадмиевых покрытиях

Приложение 9

Методы контроля функциональных свойств покрытий

Приложение 10

Метод определения внутренних напряжений металлических электрохимических покрытий

Приложение 11

Метод определения относительного удлинения никелевого покрытия

Приложение 12

Реактивы и материалы, применяемые при контроле покрытий

Приложение 13

Контрольно-измерительная аппаратура, применяемая при контроле покрытий

1. Настоящий стандарт распространяется на металлические и неметаллические неорганические покрытия (далее - покрытия), получаемые электрохимическим, химическим и горячим (оловянное и сплавы олова) способами, и устанавливает методы контроля на соответствие требованиям ГОСТ 9.301-86.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Количество деталей, отбираемых на контроль, устанавливают по ГОСТ 9.301-86.

1.2. Контроль качества покрытий проводят на наружной поверхности детали, на доступных участках, не имеющих накатки, удаленных от ребер, углов, резьбы, отверстий, мест контакта с монтажным приспособлением, паяных и сварных швов.

Необходимость проведения контроля на внутренних и труднодоступных поверхностях детали должна быть оговорена в технической документации на изделие с указанием метода контроля и места проведения измерения.

1.3. Перед проведением контроля толщины, пористости, защитных и функциональных свойств покрытий детали с покрытиями выдерживают до температуры помещения, в котором проводят контроль, и обезжиривают этиловым спиртом или пастой из окиси магния.

После обезжиривания пастой детали промывают дистиллированной водой и высушивают фильтровальной бумагой или на воздухе.

1.4. Хроматные пленки с цинковых и кадмиевых покрытий удаляют ватным тампоном, смоченным соляной кислотой (плотность 1,19 г/см3), разбавленной в соотношении 1:8, или карандашной резинкой.

1.5. Фосфатные покрытия с цинковых и кадмиевых покрытий удаляют в соответствии с ГОСТ 9.402-80.

1.6. Перед определением толщины многослойных покрытий хромовое покрытие толщиной до 1 мкм удаляют соляной кислотой (плотность 1,19 г/см3) при температуре 18-30 ??С в течение 30-60 с или соляной кислотой, разбавленной в соотношении 1:1, при температуре 50-60 ??С в течение 10-20 с.

1.7. При необходимости перед проведением контроля проводят активацию никелевых покрытий соляной кислотой (плотность 1,19 г/см3), разбавленной в соотношении 1:1, в течение 3-5 с при температуре 18-30 ??С или пастой из окиси магния.

1.8. После обработки по п.п. 1.4, 1.6, 1.7 детали промывают дистиллированной водой и высушивают фильтровальной бумагой или на воздухе.

1.9. При проведении контроля качества покрытий непосредственно после их получения подготовку по п.п. 1.3, 1.7 допускается не проводить.

1.10. После проведения контроля качества разрушающими (химическими) методами детали (или часть детали, на которой проводился контроль) промывают водой и высушивают фильтровальной бумагой или на воздухе.

2. МЕТОД КОНТРОЛЯ ВНЕШНЕГО ВИДА ПОКРЫТИИ

2.1. Метод основан на выявлении дефектов поверхности покрытия внешним осмотром и применим для деталей любой формы и габаритных размеров.

2.2. Контроль проводят осмотром деталей невооруженным глазом на расстоянии 25 см от контролируемой поверхности при естественном или искусственном освещении. Освещенность должна быть не менее 300 лк при применении ламп накаливания и не менее 500 лк при применении люминесцентных ламп.

2.3. Необходимость применения оптических приборов с указанием кратности увеличения должна быть оговорена в технической документации на изделие.

2.4. Оценку качества внешнего вида покрытий допускается проводить на соответствие образцам-эталонам, форма, размеры и внешний вид которых должны быть согласованы с заказчиком.

2.5. При оценке внешнего вида покрытий необходимо учитывать состояние поверхности детали перед нанесением покрытий.

3. МЕТОДЫ КОНТРОЛЯ ТОЛЩИНЫ ПОКРЫТИИ

3.1. Толщину покрытий контролируют неразрушающими или разрушающими методами, перечень которых приведен в табл. 1.

Таблица 1

Неразрушающие методы контроля толщины покрытий

Разрушающие методы контроля толщины покрытий

Магнитные методы:

Гравиметрический метод*

магнитоотрывной,

Аналитический метод

магнитостатический (метод магнитного потока),

Профилометрический метод*

магнитоиндукционный

Кулонометрический метод

Метод вихревых токов

Методы струи:

Радиационные методы:

электроструйный,

метод обратного рассеяния

струйно-периодический,

бета-излучения,

струйно-объемный

рентгенофлюоресцентный

Метод капли

Термоэлектрический метод

Оптический метод

__________

* В зависимости от порядка выполнения операций контроля метод может быть неразрушающим

Применение неразрушающих и разрушающих методов контроля толщины покрытий в зависимости от вида покрытия и материала детали приведено в приложениях 1 и 2.

3.2. Приборы, применяемые для контроля толщины покрытий, приведены в приложении 3.

Допускается применять другие типы приборов контроля толщины покрытий, обеспечивающие погрешность измерения не более ±10 %.

3.3. За результат измерения толщины покрытия принимают среднее арифметическое значение не менее трех измерений на поверхности одной детали или на 3-5 деталях одной партии единовременной загрузки, если поверхность одной детали менее 1 см2.

Среднее арифметическое значение толщины покрытия () в (микрометрах вычисляют по формуле

(1)

где n - количество проведенных измерений;

- толщина покрытия i-го измерения, мкм.

3.4. Допускается применять неразрушающие методы контроля толщины покрытий, не предусмотренные настоящим стандартом, в соответствии с ГОСТ 18353-79.

3.5. Требования к деталям, на которых контролируют толщину покрытий неразрушающими методами, в части шероховатости и радиуса кривизны поверхности, минимальной и максимальной толщины детали, толщины покрытия, минимальных размеров площадки измерения и т. п. указаны в технических условиях или стандартах па толщиномеры конкретных типов.

3.6. Магнитные методы

Методы применяют при условии, что значение шероховатости поверхности основного металла и покрытия Ra меньше толщины покрытия.

3.6.1. Магнитоотрывной метод

Метод основан на измерении силы отрыва постоянного магнита или сердечника электромагнита от контролируемой поверхности, которая зависит от толщины покрытия.

Метод применяют для неферромагнитных покрытий на деталях из ферромагнитных металлов при толщине покрытия до 1000 мкм и ферромагнитных покрытий на деталях из неферромагнитных металлов при толщине покрытия до 25 мкм.

Относительная погрешность метода ±10 %.

3.6.2. Магнитостатический метод

Метод основан на регистрации с помощью магниточувствительных элементов изменений напряженности магнитного поля в цепи электромагнита постоянного тока или постоянного магнита при изменении расстояния между ним и основным металлом детали из-за наличия покрытия.

Метод применяют для неферромагнитных металлических и неметаллических покрытий и гальванических никелевых покрытий на ферромагнитных металлах. Относительная погрешность метода ±10 %.

3.6.3. Магнитоиндукционный метод

Метод основан на определении изменений магнитного сопротивления участка цепи: преобразователь-контролируемая деталь, зависящего от толщины покрытия, по ЭДС, наводимой в измерительной обмотке преобразователя, питающегося переменным током низкой частоты.

Метод применяют для неферромагнитных металлических и неметаллических покрытий па ферромагнитных металлах. Относительная погрешность метода ±5 %.

3.7. Метод вихревых токов

Метод основан на регистрации взаимодействия собственного электромагнитного поля преобразователя с электромагнитным полем вихревых токов, наводимых этим преобразователем в детали и зависящих от электрофизических и геометрических параметров основного металла и покрытия.

Метод применяют для неэлектропроводных покрытий на неферромагнитных металлах и электропроводящих покрытий на неферромагнитных и ферромагнитных металлах.

При контроле толщины неэлектропроводных покрытий на деталях из неферромагнитных металлов метод применяют при условии, что значение шероховатости поверхности основного металла и покрытия Rа меньше толщины покрытия.

При контроле толщины электропроводных покрытий на деталях из неферромагнитных металлов метод наиболее эффективен при условии, что удельные электрические проводимости основного металла и покрытия отличаются не менее чем в 2-3 раза.

Относительная погрешность метода ±5 %.

3.8. Радиационные методы

3.8.1. Метод обратного рассеяния бета-излучения.

Метод основан на измерении интенсивности отраженного потока бета-частиц, которая определяется различием атомных номеров основного металла и покрытия и зависит от толщины покрытия.

Метод применяют для металлических и неметаллических покрытий на металлах при условии, что разность атомных номеров основного металла и материала покрытия не менее трех единиц. Относительная погрешность метода ±10 %.

3.8.2. Рентгенофлюоресцентный метод

Метод основан на анализе возбужденного с помощью радио-изотопного источника рентгеновского излучения, зависящего от основного металла, материала покрытия и его толщины.

Метод применяют для металлических и неметаллических покрытий на металлах.

При контроле металлических покрытий метод эффективен при толщине покрытия до 25 мкм. Относительная погрешность метода ±10 %.

3.9. Термоэлектрический метод

Метод основан на измерении термо-ЭДС, возникающей под действием тепла в детали, вызванной различием термоэлектрических свойств и теплопроводностей основного металла и покрытия и зависящей от толщины покрытия.

Метод применяют для металлических покрытий на металлах при толщине покрытия до 50 мкм и разности удельных термо-ЭДС не менее 20 мкВ/град. Относительная погрешность метода ±15 %.

3.10. Оптический метод