Додатковими методами, що можуть бути використані для оцінювання неклавіатурних пристроїв уведення, є аналізування пози і вимірювання біомеханічних навантажень. Ці два методи розглядають як можливі для оцінювання неклавіатурних пристроїв уведення. їх усе ще вивчають. Тому суть цих методів описано тільки в загальному вигляді.

D.2 Аналізування пози

Аналізування пози — це об'єктивний шлях визначання ступеня відхилень від нейтрально'! пози. Частота і кількість відхилень від нейтральної пози є показником біомеханічних навантажень. Відхилення пози повинні бути ретельно виміряні чи вручну, чи за допомогою електронного гоніометра. Ручні методи вимірювання поз займають більше часу, ніж вимірювання за допомогою вимірювальних автоматизованих систем.

D.3 Вимірювання біомеханічних навантажень

Об'єктивним методом вимірювання сприйманих навантажень під час використовування пристроїв уведення є вимірювання біомеханічних навантажень. Біомеханічні навантаження можуть бути оцінені двома способами, що не спричиняють незручності: індикацією мускульної діяльності й сили. їхня перевага полягає в тому, що вони показують рівень зусилля, який часто неможливо спостерігати чи одержати, виходячи з оцінки задоволеності, даної користувачем, чи вимірюванням поз.

Вимірювання біомеханічних навантажень і їхнє аналізування вимагають знання біомеханіки, психології, приладів, їхнього градуювання, вищої математики і статистики. Вимірювання біомеханічних навантажень, таким чином, вимагають спеціального готування керівництва випробовуван­ня і наявності складних приладів, що вимагають ретельного калібрування.

БІБЛІОГРАФІЯ

  1. ISO 9241-11:1998 Ergonomic requirements for office work with visual display terminals (VDTs) — Part 11:Guidance on usability.

НАЦЮНАЛЫНЕ ПОЯСНЕНИЯ

1. ISO 9241-11:1998 Ергономічні вимоги до роботи з відеотерміналами в офісі. Частина 11. Вимоги до прийнятності до експлуатації

  1. Aaras A. (1990) Acceptable muscle load on the neck and shoulder regions assessed in relation to the incidence of musculoskeletal sick leave: Implications for human-computer interaction. International Journal of Human-Computer Interaction, 2(1): pp. 29—39.
  2. Aaras A., Westgaard R.H. and Stranden, E. (1988). Postural angles as an indicator of postural load and muscular injury in occupational work situations. Ergonomics, 31(6): pp. 15 — 933.
  3. Abernathy C.N, and Hodes D.G. (1987). Economically determined pointing device (mouse) design. Behaviour and Information Technology, 6(3): pp. 311 — 314.
  4. Adolf J. (1989).An expert system for the selection of input devices, Proceedings of the Human Factors Society, 1: pfft 335 — 339.
  5. Akamatsu M. (1992). The influence of combined visual and tactile information on finger and eye movements during shape tracing, Ergonomics, 35(5-6): pp. 647 — 660.
  6. Akamatsu M. and Sato S. (1994). A multi-modal mouse with tactile and force feedback, International Journal of Human-Computer Studies, 40(3): pp. 443 — 453.
  7. Akamatsu M,, Mackenzie I.S. and Hasbroucq T. (1995). A comparison of tactile, aduitory, and visual feedback in a pointing task using a mouse-type device. Ergonomics. 38(4): pp. 816 — 827.
  8. Armstrong T.J., Martin B.J., Arbor A., Rempel D.M. and Johnson P.W. (1994). Mouse input devices and work-related upper limb disorders, Work with Display Units Conference Proceedings, C.feO — 22.
  9. Amaut L Y. and Greenstein J.S. (1985). Two experiments investigating the effects on control-display gain and method of cursor control on touch tablet performance, Proceedings of the Human Factors Society, 1: pp. 122 — 136.
  10. Amaut L. Y. and Greenstein J.S. (1990). Is display/control gain a useful metric for optimizing an interface, Human Factors. 32(6): pp. 651 — 663.
  11. Amaut L.Y. and Greenstein J.S. (1986). Optimizing the touch tablet: the effects of control-display gain and method of cursor control, Human Factors, 28: pp. 717 — 726.
  12. Arnaut L.Y. and Greenstein J.S. (1987). An evaluation of display/control gain, Proceedings of the Human Factors Society 31st Annual Meeting. 1: pp. 437 — 441.
  13. Ayoub M.M. and LaPresti P. (1971). The determination of an optimum size of cylindrical handle by use of electromyography, Ergonomics, 14: pp. 509 — 518.
  14. Baeker R. (1980). Some characteristics of good interactive techniques, Methodology of Interaction. Guedj, et al. eds, North-Holland Publishing Company, pp. 127 — 137.
  15. Baggen E.A., Snyder H.L. and Miller M.R. (1988). A human factors evaluation of current touch-entry technologies. SID International Symposium Digest of Technical Papers XIX: pp. 259 — 262,
  16. Bailey R. (1989). Scale recommendations and type size, in Human Performance Engineering. Prentice-Hall, Englewood Cliffs, New Jersey, pp. 223 — 527.
  17. Beaton R.J. and Weiman N. (1984). Effects of touch key size and separation on menu selection accuracy. Tektronix Technical Report HFL-500-02, Beaverton, Oregon.
  18. Berger С (1994). Stroke-width, form and horizontal spacing on numerals as determinants of the threshold of recognition, J. of Applied Psychology, 28: pp. 208 — 233 and 336 — 340.
  19. Beringer D.B. and Peterson J.G. (1985), Underlying behavior parameters of the operation of touch-input devices: biases, models, and feedback. Human Factors, 27(4): pp. 445 — 458.
  20. Beringer D.B. and Maxwell S.R. (1989). The use of touch-sensitive human-computer interfaces: behavioral and design implications, Proceedings of the Human Factors Society, p. 435.
  21. Borg G. (1970). Perceived exertion as an indicator of somatic stress, Scand. J. Rehab. Med., 2:3: pp. 92 — 98.
  22. Bullinger H.J., Kern P., and Muntzinger W.F. (1987), Design of controls, in Handbook of Human Factors Engineering. Salvendy, G, (Ed.). Wiley, New York, pp. 584 — 591.
  23. Buxton W., Baecker R. and Myers B. (1987). Human-computer interaction: Selected topics. Tutorial Notes #21, SIGGRAPH, pp. 12 — 13 and 333 —341.
  24. Chang I.F., Swart C, Wong L, Tan S. and Tan K.L. (1989). New touch-input technology for CRT displays. SID International Symposium Digest of Technical Papers, pp. 338 — 341.
  25. Chase J.D.. Casali S.P. and Hartspn H.R. (1992). The predictability of cursor control device performance based on a primitive set of user object-oriented cursor actions, Proceedings of the Human Factors Society 36th Annual,Meeting, 1: pp. 306 — 310.
  26. Cochran D.J. and Riley M.W. (1986). The effects of handle, shape and size on exerted forces, Human Factors, 28(3): pp. 253 — 265.
  27. Collinsion P.O., Jones R.G., Howes J., Nichols N.. Sheehy G.R. and Cramp D.G. (1989). Of mice and men — data capture in the clinical environment. International Journal of Clinical Monitoring and Computing, 6: pp. 217 — 222.
  28. Corlett E.N. (1990). Static muscle loading and the evaluation of posture, in Evaluation of Human Work, edited by J.R, Wilson and E.N. Corlett, Taylor and Francis, New York, pp. 542 — 563.
  29. Cromwell L, Weibel F.J., Preiffer E.A. and Usselman L.B. (1980). Biomedical Instrumentation and Measurements, Prentice Hall, New York.
  30. Cushman W.H. and Rosenberg D.J. (1991). Input devices for computers, in Human Factors in Product Design, Elsevier Science Publications, New York. pp. 192 — 222.
  31. Davies Т.Е., Mattews H.G. and Smith P.D. (1988). Digitizers and input tablets, Input Devices, ed. by S. Sheer, Academic Press, Boston, MA.( pp. 179 — 217.
  32. Douglas S.A. and Mithal A.K. (1996). The Ergonomics of Computer Pointing Devices. Springer-Verlag.
  33. Ellingstad V.S., Parng A. Gehlen J.R. Swierenga S.J. and Auflick J. (1988). An evaluation of the touch tablet as a command and control input device, U.S. Naval Ocean Systems Center.
  34. Etoh M., Tomono A. and Kobayashi (1990). Direct finger pointing as a man-machine interface, Analysis Design and Evaluation of Man-Machine Systems 1989, by B. Hu, Pergamon Press, Oxford, pp. 125™ 130.
  35. Fernandez J.E., Cihangirli M., Hommertzheim D.I. and Sabuncuoglu I. (1988). The effects of input devices on task performance, Trends in Ergonomics/Human Factors V, ed. by F. Abhazadeh, North-Holland, Amsterdam, pp. 83 — 89.
  36. Fitts P.M. (1954). The information capacity of the human motor system in controlling amplitude of movement. Journal of Experimental Psychology, 47(6), pp. 381 — 391.
  37. Franco G., Castelli С and Gatti C. (1992). Postural tenosynovitis by misuse of a computer input device (mouse], Medicina del Lavoro, 83(4): pp. 352 — 355.
  38. Gaertner K.P. and Holzhausen K. (1978). Human engineering evaluation of a cockpit display/ input device using a touch sensitive screen, AGARD Conference Proceedings, (240): pp. 1 — 13.
  39. Gantchev G. (1982). What do we neglect when evaluating muscle fatigue, International Ergonomics Association Conference Proceedings, pp. 324 — 325.
  40. Gobel M., Springer J. and Luczak H. (1994). Effects of tactile feedback in process control, exemplary in mouse-driven interfaces, implementation and benefits. International Ergonomics Association Proceedings, F: pp. 44 — 46.
  41. Greenstein J.S. and Arnault L. (1987). Human factors aspects of manual computer input devices, in Human Factors in the Design and Use of Computer Systems, ed. by G. Salvendy, Wiley-Intersience, New York, pp. 1450 — 1489.
  42. Haaland M. (1994), The «mouse-arm» syndrome concurrence of musculoskeletal symptoms and possible pathogenesis among VDU operators, Work with Display Units Conference Proceedings, C.23 — 24.
  43. Hagberg M. (1994). The «mouse-arm» syndrome concurrence of musculoskeletal symptoms and possible pathogenesis among VDU operators, Work with Display Units Conference Proceedings, C: pp. 23 — 24.
  44. Hall A.D., Cunningham J.B., Roache R.P., and Cox J.W. (1988). Factors affecting performance using touch-entry systems: Tactile recognition fields and system accuracy, Journal of Applied Psychology, 73(4): pp. 711 — 720.
  45. Hammerton M. (1962). An investigation into the optimal gain of a velocity control system. Ergonomics. 5: pp. 539 — 543.
  46. Harada H., Okabe K., Katsuura T. and Kikuchi Y. (1994). Effects of variations in the human-machine interface on physiological functions, Proceedings of the 2nd International Congress on Physiological Anthropology, Kiel, September 12-16. 1994, German Society of Physiological Anthropology, University of Kiel, and Japanese Society of Physiological Anthropology, Chiba University, pp. 27 — 30,
  47. Hedicke V., Beimel J., Kornblum K. and Timpe K.P. (1994). Kinesthetic feedback for trackballs, Conference on Work with Display Units, pp. F57 — 58.
  48. Hodes D. and Akagi K. (1986). Study, development and design of a mouse. Proceedings of the Human Factors Society - 30th Annual Meeting, 2: pp. 900 — 904.
  49. Hough S.E. and Stanley P.S. (1991). Militarized infra-red touch panels, S.P.I.E., 1456: pp. 240 — 249.
  50. Israelski E.W. (1977). Human limitations in using a portable light pen device or manually scanning barcode patterns. Proceedings of the Human Factors Society — 21st Annual Meeting, pp. 221 —227.
  51. James C.P.A., Harburn K.L and Kramer J.F. (1997). Reliability of a postural index of upper extremity repetitive movement risk-factors, Proceedings of the 13th Triennial Congress of the International Ergonomic Association, 4: pp. 369 — 371.
  52. Jenkins W.L. and Karr A.C. (1954). The use of a joy-stick in making settings on a simulated scope face. Journal of Applied Psychology, 38: pp. 457 — 461.
  53. Johnson P., Rempel D. and Hagberg M. (1997). Developing and evaluating force sensing mice for use in epidemiological studies, Proceedings of the 13th Triennial Congress of the international Ergonomic Association, 5: pp,47 — 49.
  54. Johnson P.W., Bloom Т., Dropkin J., Hewes J. and Rempel D. (1994). Analysis of computer mouse usage in typical software applications: Word processing, spreadsheets, and graphics. UCSF-UCB Ergonomic Laboratory.
  55. Johnson P.W., Smuta W.P., Tal R. and Rempel D. (1993). Pinch forces during computer mouse operations, Poster presentation at the Human Factors and Ergonomics Society Meeting.
  56. Johnson P.W., Tai R., Smutz W.P. and Rempel D.M. (1994). Fingertip forces measured during computer mouse operation: A comparison of pointing and dragging. Proceedings of the International Ergonomics Association, pp. 208 — 210.
  57. Jurgens H. W., Aune I. A. and Pieper, Ursula P. (1990). International Data on Anthropometry, international Labour Office, Geneva.
  58. Juul-Kristensen В., Jensen C, Finsen L., Hansen K., Hansson G-A, Fallentin N. and Christensen H. (1997). Wrist load in computer work, Proceedings of the 13th Triennial Congress of the International Ergonomic Association, 4: pp. 168 — 170.
  59. Karlqvist L, Bemmark E., Ekenvall I., Hagberg M., Isaksson and Rosta T. (1997). Position of the computer mouse — a determinant of posture, muscular load and perceived exertion? Proceedings of the 13th Triennial Congress of the International Ergonomic Association, 4: pp. 61 — 63.
  60. Karlqvist L, Hagberg M. and Selin K. (1994). Variation in upper limb posture and movement during word processing with and without mouse use, Ergonomics, 37(7): pp. 1261 — 1265.
  61. Keyson D.V. (1994). Dynamic control gain and tactile feedback in the capture of cursor movements, IPO Annual Progress Report 29, Institute for Perception Research, Eindhoven, The Netherlands, pp. 101 — 108.
  62. Koreishi K. and Yamasaki K. (1989) A basic study on a multifunction control panel, in A, Coblentz (ed.), Vigilance and Performance in Automized Systems, Kluver Academic Publications, The Netherlands, pp. 219 — 227.
  63. 64 Leahy M. and Hix D. (1990). Effect of touch screen target location on user accuracy, Proceedings of the Human Factors Society 34th Annual Meeting, 1: pp, 370 — 374.
  64. Loricchio D.F. (1993). A comparison of keyboard-integrated pointing devices, Human-Computer Interaction: Software and Hardware Interface, ed. by G. Salvendy and M. J. Smith, Elsevier, Amsterdam, pp. 1075 — 1079.
  65. Mack R. and Montaniz F. (1991), A comparison of touch and mouse interaction techniques for a graphical windowing software environment. Proceedings of the Human Factors Society 35th Annual Meeting, pp. 286 — 289.
  66. Mackenzie I.S., Sellen A. and Buxton W. (1991). A comparison of input devices in elemental pointing and dragging tasks, ACM, pp. 161 — 166.
  67. Marras W. (1992). Overview of electromyography in ergonomics, in Selected topics in surface electromyography for use in the occupational setting: Expert perspectives, U.S. Department of Health and Human Services, National Institute for Occupational Safety and Health.
  68. Mital A. (1991). Hand tools: injuries, illness, design and usage, in Workspace, Environment and Tool Design, ed. by A. Mital and W. Karwowski, pp. 219 — 251.
  69. Murata A. (1991), An experimental evaluation of mouse, joystick, joycard, lightpen, trackball and touchscreen for pointing — Basic study on human interface design, Human-Computer Interaction: Software and Hardware Interface, ed. by G. Salvendy and M. J. Smith, Elsevier, Amsterdam, pp. 123 — 127.
  70. Murata A. (1991). Evaluation of input devices for horizontal movements, Japanese Journal of Ergonomics, 27(3): pp, 169 — 172.
  71. Ng H.H. and Puchkoff S.J. (1981). Touch-sensitive screens ensure a user friendly interface. Computer Design, 20(8): pp. 135 — 137.
  72. Oh S. and Radwin R.G. (1993). Pistol grip power tool handle and trigger size eflects on grip exertions and operator performance, Human Factors, 35(3): pp. 551 — 569.
  73. Ohkura M. and Kubota S. (1987). A comparison of positioning times between a lightpen and a mouse for simple positioning tasks on a CRT, Japanese Journal of Ergonomics. 23(5): pp. 311 — 316.
  74. Paul R.L. (1988). Touch screen usage in plant computer systems: A case study. Proceedings of the 10th Annual Conference on Computers and Industrial Engineering, 15(1-4): pp. 410 — 417.
  75. Pfauth M, and Priest J. (1981). Person-computer interface using touch screen devices. Proceedings of the Human Factors Society 25th Annual Meeting, pp, 500 — 504.
  76. Pheasant S. (1987). Ergonomic, standards and guidelines for designers. Department of Anatomy. Royal Free Hospital School of Medicine, Richard Clay Publisher, London, U.K.
  77. Pickering J.A. (1986). Touch sensitive screens: the technologies and their application. International Journal of Man-Machine Studies, 25(3): pp. 249 — 269.
  78. Potter P., Berman M. and Shneiderman B. (1989). An experimental evaluation of three touch screen strategies within a Hypertext database, International Journal of Human-Computer Interaction, 1(1); pp,41 _52.
  79. Potter R.L., Weldon L.J. and Shneiderman B. (1988). Improving the accuracy of touch screens: An experimental evaluation of three strategies. Proceedings of the Conference on Human Factors in Computing Systems, pp. 27 — 32.
  80. Price L.A. and Cordova C.A, (1983). Use of mouse buttons, CHI Proceedings, pp. 262 — 266.
  81. Pulat M. (1992). Fundamentals of Industrial Ergonomics, Prentice-Hall, Englewood Cliffs, New Jersey, pp. 246 — 270,
  82. Putz-Anderson V. (ed.) (1992). Cumulative Trauma Disorders, NIOSH, Taylor and Francis, U.K.
  83. Reinhart W. and Marken R. (1985). Control systems analysis of computer pointing devices, Proceedings of the Human Factors Society, 1: pp. 119 — 121.
  84. Rempel D., Armstrong Т., Marras B. and Silverstein B. (1997). Methods for evaluating hand and forearm loads, Proceedings of the 13th Triennial Congress of the International Ergonomic Association, 4: pp. 213 — 215.
  85. Rempel D., Johnson Т., Smutz P. and Tal P. (1994). Finger forces measured during computer mouse use, Work with Display Units Conference, С 28 — 29.
  86. Ritchie G.J. and Turner J.A. (1975). Input devices for interactive graphics, International Journal of Man-Machine Studies, 7: pp. 639 — 660.
  87. Rodahl K. (1989). Muscle tension, in The Physiology of Work, Taylor and Francis, New York, Chapter 14: pp. 235 — 241,
  88. Rogers J.G. (1984). Of mice and touchpanels: The human factors, Proceedings of the Fifth Annual NCGA Conference, pp. 480 — 485.
  89. Sanders M.S. and McCormick E. J. (1993). Controls, pp. 258-301; Controls and data entry devices, in Human Factors in Engineering and Design, pp. 334 — 382.
  90. Segalowitz S.J. and Graves R.E. (1990). Suitability of the IBM XT, AT, and PS/2 keyboard, mouse, and game port as response devices in reaction time paradigms, Behavior Research Methods, Instruments, & Computers, 22(3) pp. 283^289.
  91. Sellen A.J., Kurthenbach G.P. and Buxton W.A. (1990). The role of visual and kinesthetic feedback in the prevention of mode errors, in Human-Computer Interaction — INTERACT '90, ed. by D.Diaper et al., Elsevier Science Publications, B.V., pp. 667 — 673.
  92. Smith S.L. and Mosier J.N. (1986). Guidelines for Designing User Interface Software, Mitre Corporation, Bedford, MA.
  93. Spitz G. (1990). Target acquisition performance using a head mounted cursor control device and a stylus with digitizing tablet, Proceedings of the Human Factors Society, 1; pp. 405 — 409.
  94. Stammers R.B, and Bird J.M. (1980)L.Controller evaluation of a touch input air traffic data system: An «indelicate» experiment. Human Factors, 22(5): pp. 581— 589.
  95. Swezey R.W. and Davis E.G. (1983). A case study of human factors guidelines for computer graphics. IEEE Computer Graphics and Applications, pp. 21 — 30.
  96. Thomas B. and McClelland I. (1994), The development of a touch screen based communications terminal, people and technology in harmony. Proceedings of the Human Factors and Ergonomics Society 38th Annual Meeting, 1: pp. 175 — 179,
  97. Tinker M.A. (1965). Bases for Effective Reading, University of Minnesota Press, Minnesota, pp. 136— 141.
  98. Trankle U. (1989). Cursor positioning using a mouse — some thoughts and results on user-friendly design. Zeitschrift fur Arbeitswissenschaft, 43(3): pp. 141 — 146.
  99. Verplank W. and Oliver K. (1989). Microsoft mouse: testing for redesign. Interface 89.
  100. Weisner S.J. (1988). A touch-only user interface for a medical monitor. Proceedings of the Human Factors Society 32nd Annual Meeting, pp. 435 — 439.
  101. Westgaard R.H. (1988). Measurement and evaluation of postural load in occupational work situations. European Journal of Applied Physiology and Occupational Physiology, 57: pp. 291 — 304.
  102. Whitfield D, Ball R.G. and Bird J.M. (1983). Some comparisons of on-display touch input devices for interaction with computer generated displays. Ergonomics, 26(11): pp. 1033 — 1053.
  103. Woodson (1981). Controls, in Human Factors Design Handbook, McGraw-Hill Co., New York, pp. 571 —643.

УКНД 13.180; 35.180

Ключові слова: ергономіка, офісне устаткування, пристрій уведення, зворотний зв'язок, робоча поза, продуктивність, керованість


1 Захват цільового об'єкта може здійснюватися чи вручну (наприклад, натисканням кнопки), чи автоматично (на-приклад, за допомогого программ, чутливої до наявності курсору усередині цільової зони).